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Griffiths phase manifestation in disordered dielectrics
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Abstract. We predict the existence of a Griffiths phase in dielectrics with a concentrational crossover
between dipole glass (electric analog of spin glass) and ferroelectricity. Particular representatives of the
above substances are KTaO3:Li, Nb, Na, or relaxor ferroelectrics like Pb1−xLaxZr0.65Ti0.35O3. Since this
phase exists above the ferroelectric phase-transition temperature (but below that temperature for ordered
substances), we call it a “para-glass phase”. We assert that the difference between paraelectric and para-
glass phases in the above substances is the existence of clusters (inherent to the “ordinary” Griffiths phase
of Ising magnets) of correlated dipoles. We show that randomness plays a decisive role in the Griffiths
(para-glass) phase formation: this phase does not exist in a mean field approximation. To investigate the
Griffiths phase properties, we calculate the density of Yang-Lee (YL) zeros in the partition function and
find that it has “tails” inherent to the Griffiths phase in the above temperature interval. We perform
calculations on the basis of our self-consistent equation for the long-range order parameter in an external
electric field. This equation has been derived in the framework of the random field theory. The latter
automatically incorporates both short-range (due to indirect interaction via transverse optical phonons of
the host lattice) and long-range (ordinary dipole-dipole) interactions between impurity dipoles, so that the
problem of long-range interaction considerations does not appear in it.

PACS. 64.70.Pf Glass transitions – 77.80.Bh Phase transitions and Curie point

It was shown by Griffiths [1] that the free energy of a dilute
Ising ferromagnet is a nonanalytic function of the exter-
nal magnetic field for all temperatures between the critical
value Tc(x) (x is the concentration of lattice sites with-
out Ising spins) and Tc(1) of the corresponding nondilute
system. The manifestation of nonanalyticity in the origi-
nal article of Griffiths was the distribution of the zeros in
the partition function Z (the Yang-Lee (YL) zeros) in the
plane of complex magnetic fields H = iθ. Namely, below
Tc(1) YL-zeros appear arbitrarily close to the pointH = 0,
implying a zero radius of convergence for expansions of
thermodynamic quantities in powers of H. The “visible
sign” of such nonanalyticity is the appearance of a “tail”
in the density of YL zeros ρ(θ) at Tc(x) < T < Tc(1).

Dielectric systems are, in many respects, different from
magnetic ones. The main difference is that the main inter-
action in dielectrics is the long-range dipole-dipole inter-
action, whereas in magnets the latter is a small relativistic
correction to the short-range exchange interaction. It was
shown in [2] that the dipole-dipole interaction in disor-
dered dielectrics does not prevent the occurrence of the
aforementioned “tails” in ρ(θ) and thus to the realization
of a Griffiths phase analog.
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In the present paper we investigate the manifesta-
tion of a Griffiths phase in dielectrics, where both long-
range ferroelectric order and dipole glass (say, “dielectric
spin glass”) phase can occur depending on the impurity-
dipole concentration. Particular representatives of such
substances are KTaO3:Li, Nb, Na, where Li, Nb or Na,
being off-center ions, constitute the impurity dipoles with
a discrete number of permissible orientations in the host
KTaO3 matrix (see [3] for details). Other particular repre-
sentatives of the aforementioned class of substances are re-
laxor ferroelectrics like Pb1−xLaxZr0.65Ti0.35O3 (PLZT),
which can be considered as some reference phase (in the
case of PLZT it is PbZr0.65Ti0.35O3 having long-range fer-
roelectric order) “spoiled” by intrinsic defects of a differ-
ent kind, playing the role of impurity dipoles (see [4] for
details).

Although the description of these disordered dielectrics
is still not complete at present, we suggested a so-called
random local field method (see e.g. [5] and references
therein) for their description. This method captures re-
markably well the peculiarities of the physical properties
of these substances, namely a concentrational crossover
between ferroelectric and dipole glass phases, the exis-
tence of a mixed ferro-glass phase, and the nonexponential
long-time relaxation in glass and ferro-glass phases [5].
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In this method, we derive the equation for the long-
range order parameter L. This equation was obtained self-
consistently through the distribution function of random
fields acting between impurity dipoles (see [5] for details).
The specific form of this equation depends on the par-
ticular number of orientations of the impurity dipoles in
the host crystal matrix. For the simplest case of impu-
rity dipoles with only two permissible orientations this
equation has the form

L =
1
β

∫ ∞
−∞

tanh (βE) f(E,L)dE,

f(E,L) =
1

2π

∫ ∞
−∞

exp(iEρ) exp [F1(ρ) + iF2(ρ)] dρ,

F1(ρ) = n

∫
V

[cos(Kzzρ)− 1] d3r,

F2(ρ) = nL

∫
V

sin(Kzzρ)d3r

≡ nE0(ρ)L,

β =
1

kBT
, (1)

where n is the concentration of impurities, f(E,L) is a
distribution function of random fields (see e.g. [5]), F1(ρ)
is “responsible” for the dispersion of random fields, F2(ρ)
for the mean value of the random field, Kzz is a component
of the tensor of interaction Kαβ(r) (α, β = x, y, z, r is the
interimpurity separation) between impurity dipoles in the
highly polarizable dielectric host. The general form of Kαβ
reads (see e.g. [6] and references therein)

Kαβ(r) =
d∗2

ε0r3

{
f1(r/rc)δαβ

+(3mαmβ − δαβ)
(
1 + f2(r/rc)

)}
,

m =
r
r

(2)

where ε0 is the host lattice’s static dielectric permittiv-
ity, d∗ is the effective dipole moment of the impurity
(see e.g. [3]), rc is the host lattice’s correlation radius
(two impurities at a distance less than or equal to rc
“feel” each other). The physical reason for the appear-
ance of rc and the functions f1(x), f2(x) ∝ x2 exp(−x)
is the indirect interaction of impurity dipoles via the
host lattice’s soft phonon mode (see e.g. [6] and ref-
erences therein). If the latter interaction is absent, we
have rc → 0, f1(r/rc), f2(r/rc) → 0 so that (2) gives
the ordinary dipole-dipole interaction. It is seen that in-
teraction (2) incorporates both a long-range part (term
(3mαmβ−δαβ)/r3) and a short-range part (terms contain-
ing f1(x) and f2(x)). The explicit form of the functions
f1 and f2 can be found in [4,6].

It can be shown (see e.g. [5]) that at high impurity
concentrations the distribution function of random fields
has a Gaussian form. This form can be obtained from (1)
by the expansion of the integrands in F1,2(ρ) up to first

leading order. This gives

F1(ρ) = cρ2, F2(ρ) = nE0L,

c =
16π
15

(
nd∗2

)2
(ε0)2nr3

c

, E0 = 4π
nd∗2

ε0
· (3)

Since the case of a Gaussian distribution function implies
the strongest (both long-range and short-range) interac-
tion between impurity dipoles (and consequently their
clusters) this case can be regarded as the most difficult
for a Griffiths phase to occur. We shall demonstrate the
manifestation of a Griffiths phase for this case with the
understanding that for lower impurity dipole concentra-
tion the realization of a Griffiths phase is easier.

The equation for the order parameter for a Gaussian
distribution function takes the form

L =
2
π

∫ ∞
0

∫ ∞
0

tanh
(
E

kT

)
exp(−cρ2)

× sin(ρE) sin ρ(E +E0L) dρdE, (4)

where E is an external electric field. We introduce the
following dimensionless variables

E
E0

= h, ρE0 = y,
E

E0
= x,

kT

E0
= τ,

c

E2
0

=
1

15πz
, z = nr3

c . (5)

With these variables, the equation for L takes the form

L =
2
π

∫ ∞
0

∫ ∞
0

tanh
(x
τ

)
exp

(
− y2

15πz

)
× sin (xy) sin y (h+ L) dxdy. (6)

Integration over x in (6) gives

τ

∫ ∞
0

exp
(
− y2

15πz

)
sin y(h+ L)
sinh

(
πyτ

2

) dy = L. (7)

We shall investigate the Griffiths phase properties on the
basis of equation (7).

The equation for the phase transition temperature τc
can be obtained from (7) at L→ 0 (of course, at h = 0)

τc

∫ ∞
0

y exp
(
− y2

15πz

)
dy

sinh
(
πyτc

2

) = 1. (8)

The equation for the critical concentration of impurities
can be obtained from (8) at τc → 0. It reads

2
π

∫ ∞
0

exp
(
− y2

15πzcr

)
dy = 1, or zcr =

1
15
· (9)

Equations (8, 9) determine the phase diagram of the sys-
tem under consideration. It is shown in Figure 1.

The theorem of Yang and Lee states that the zeros
of the partition function Z lie on the unit circle h = iθ
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Fig. 1. Phase diagram of the substances under consideration.

in the plane of the complex variable z = exp(−2βH) [7].
To calculate the density of YL-zeros, we put in (7)

h = iθ, L = L1 + iL2. (10)

We have from (7)

L1 = τ

∫ ∞
0

exp
(
− y2

15πz

)
sin(L1y) cosh (y(θ + L2))

sinh
(
πyτ

2

) dy,

L2 = τ

∫ ∞
0

exp
(
− y2

15πz

)
cos(L1y) sinh(y(θ + L2))

sinh
(
πyτ

2

) dy.

(11)

The density of YL-zeros ρ(θ) equals [8]

ρ(θ) =
L1

π
· (12)

Equations (11, 12) are the main theoretical results of this
paper. To find ρ(θ) from (12), we should find (at a given
temperature and concentration) L1 and L2 from (11). The
Griffiths phase is realized in the substances under consid-
eration if ρ(θ) has “tails” near θ = 0 at τc < τ < 1. This
is because, in the language of equations (8, 9), the phase
transition temperature of a nondilute system Tc(1) corre-
sponds to the quantity E0 determining the phase transi-
tion temperature in a mean field approximation TcMF, i.e.
Tc(1) ≡ E0 = TcMF.

We plot the dependence ρ(θ) for different τ and
z in Figure 2. First of all, one sees the presence of
tails inherent to the Griffiths phase of dilute systems.
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Fig. 2. Density of YL-zeros. Characteristic “tails” inherent to
the Griffiths phase are shown. The curve labeled “MF” is also
realized in mean field approximation (see Eq. (19)).

For nondilute (completely ordered systems) there is no
Griffiths singularities. This clearly demonstrates the oc-
currence of a Griffiths phase in dielectrics with a concen-
trational crossover between dipole glass and ferroelectric-
ity. Figure 2 shows the region of a existence of a Griffiths
phase in the phase diagram of these substances.

Since a Griffiths phase occurs at temperatures higher
than that of the ferroelectric phase transition of the
disordered system, but lower than that of the ordered
(nondilute) system, we can call this phase a “para-glass”.
Glassy behaviour is due to clusters of impurity dipoles
(see [2,8–10]). The manifestation of these clusters is indeed
“tails” in ρ(θ). It is seen from Figure 2 that at tempera-
tures higher than TcMF there are no more “tails” in ρ(θ),
and the para-glass phase becomes a conventional paraelec-
tric phase.

Another peculiar feature of all curves is the existence
of some threshold value θe, below which there are no YL-
zeros (ρ(θ) ≡ 0). This is the so-called YL edge, which
is the manifestation of the ordered state of the system
(paramagnetic phase of a nondilute system, see [8–10]).
The “tail-like” approach to θe at smaller z is due to dis-
order (glassy effects) in the system. Thus at sufficiently
small z (z = 0.05 in Fig. 2) the system is in a mixed
ferro-glass phase, exhibiting both “order” and “disorder”
features. The difference between ferro-glass and para-glass
is that in the former an overall long-range order exists,
while in the latter it does not exist. Our supposition is
that the para-glass phase corresponds to superparamag-
netism, well-known in spin glasses.
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Fig. 3. Temperature dependence of θe at different impurity
concentrations. The curve labeled “MF” is also realized in the
mean field approximation (see Eq. (20)).

To find the equation for θe we put L1 = 0 in (11).

L2 = τ

∫ ∞
0

exp
(
− y2

15πz

)
sinh(y(θe + L2))

sinh
(
πyτ

2

) dy. (13)

1 = τ

∫ ∞
0

exp
(
− y2

15πz

)
y cosh(y(θe + L2))

sinh
(
πyτ

2

) dy.

The dependence θe(τ) is shown in Figure 3. It is seen that
at z > zcr = 1/15 (ferroelectric and ferro-glass phase)
θe = 0 at τ = τc, while at z < zcr, θe 6= 0 for all tem-
peratures. To trace the transition from the ordered phase
to the Griffiths phase it is instructive to investigate the
concentrational dependence of θe at zero temperature.

We have from (13)

L2 =
2
π

∫ ∞
0

exp
(
− y2

15πz

)
sinh(y(θe + L2))

y
dy, (14)

1 =
2
π

∫ ∞
0

exp
(
− y2

15πz

)
cosh(y(θe + L2))dy. (15)

The integral in (15) can be calculated analytically giving

√
15z exp

[
15πz

4
(θ + L2)2

]
= 1.

Denoting µ = θ + L2, we obtain

θe = µ− 2
π

∫ ∞
0

exp
(
− y2

15πz

)
sinh(µy)

y
dy,

µ2 = − 2
15πz

ln(15z) (16)
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Fig. 4. Concentrational dependence of θe at zero temperature.

or

θe(λ) =
λ√
π

exp
(
λ2

4

)
− 2
π

∫ ∞
0

exp(−t2)
sinh(λt)

t
dt,

λ2 = −2 ln(15z). (17)

The dependence (17) is reported in Figure 4. It can be
shown that the equation θe(λ) = 0 is satisfied at z =
zcr = 1/15.

Let us finally show that the para-glass phase cannot
be realized in the ordered dielectric. To do so we demon-
strate the absence of “Griffiths tails” for nondiluted sys-
tems. This corresponds to the mean field limit (z → ∞)
in the random field method. In this limiting case we have
from (7)

LMF = tanh
(
h+ LMF

τ

)
. (18)

This equation is indeed the mean field equation for the
order parameter of the Ising model. In this case τcMF = 1.
Substituting (10) for (18) gives:

L1MF =
sinh(2L1MF/τ)

2
(
sinh2 (L1MF/τ) + cos2 (θ + L2MF/τ)

) ,
L2MF =

sin
(
2 (θ + L2MF/τ)

)
2
(
sinh2 (L1MF/τ) + cos2 (θ + L2MF/τ)

) · (19)

To calculate θe(τ) in this case we should put L1MF = 0
in (11). This after some algebra yields

θe = arccos
√
Q−

√
Q(1−Q), Q =

1
τ
· (20)
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The dependences ρ(θ) and θe(τ) for a nondiluted system
are shown in Figures 2 and 3 (curves, labeled “MF”) re-
spectively. One sees the absence of “tails” in ρ(θ). This
shows that random fields (via their distribution func-
tion f(E,L)) play a major role in the Griffiths phase
formation.

In the present paper we have shown the existence of a
Griffiths phase, inherent to disordered Ising magnets, in
dielectrics with a concentrational crossover between dipole
glass and ferroelectricity. We call this phase “para-glass”
because it combines the paraelectric phase features (ex-
istence of YL-edge θe) and “disorder features” (tails in
ρ(θ)). This phase resembles very much the superparamag-
netic phase, peculiar to many spin glasses.

Since the physical properties of the glass and ferro-
glass phases of these substances are different from those
in the para-glass (Griffiths) phase, we can expect some
peculiarities of the latter phase, which might be helpful
in its experimental observation. One such feature may be
the nonexponential relaxation of the polarization, different
from that in the glass and ferro-glass phases. Its investi-
gation is an interesting problem and can be done within
the above formalism.

Unfortunately, we do not know of any direct ex-
perimental observation of the Griffiths phase in these

substances. For the description of possible (direct or indi-
rect) experiments our approach can be easily extended to
the case of a nonGaussian distribution function of random
fields, as well as to tunneling of the off-center impurities
between their permissible orientations (i.e. between min-
ima of their multi-well potentials) in the host dielectric.
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